New update of EuroForMix

By Øyvind Bleka
Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway

Overview

- **BETTER speed**: Possibly 4-6x faster for 4 unknowns
 - For MLE, MCMC, INTEGRATION
 - Also for Qualitative model (forensim R-package not used)
- Better functionalities for Bayesian based LR (BayesFactor/quantile):
 - Bayesian integral is more robust and must be done after the MLE calculation
 - MCMC trace plot of BayesFactor and Conservative LR (quantile)

New GUI layouts (next slides)

- New functions which simplify terminal interface
 - A Rmarkdown tutorial is also available.
- ++ more

Important/useful changes made to the GUI

Delete profiles from GUI

Select data in a separate window

Further Action

MCMC simulation

Deconvolution

Model validation

Model fitted P.H.

Further Action

MCMC simulation

Deconvolution

Model validation

Model fitted P.H.

Further

LR sensitivity

Bayes Factor

Create report

New header showing evaluated Evidence and hypotheses

Show LR per marker in separate window

Bayes Factor
(Bayesian integral) moved here:
Utilizes MLE information

User-friendly changes

- Model validation:
 - Entering significance level no longer needed.
 - Can be changed under "Optimization toolbar"
- Optimization MCMC Integration Dec

 Set number of successful optimizations
 Set variation of randomizer

 Set difference tolerance
 Set seed of randomizer

 Set accuracy of optimization

 Set significance level of validation
 Set maximum threads for computation
- Number of significant points outside envelope is now indicated in the report, but only if user has conducted the analysis.
 - Avoids timeconsuming report creation.

Pop-up question for user (in case of accidental clicks):

Updated Peak height summary plot (view Evidence)

- Easier to recognize differences:
 - Highlighting each sample with different colors.
 - A dashed smoothing curve is provided.

Trace plots for LR-sensitivity

- Possible to visualize a "trace plot" for checking convergence of
 - Conservative LR (chosen quantile)
 - Bayes Factor estimate

1x more

Including more data details to the Report

Data used for the evaluation is included last in the report

```
"x" is the allele of reference
-----Evaluating data-----
        stain5, stain95 | ref1, ref2 | Freqs.
D3S1358
14
         417 437
                                 0.124113829256116
                                                                          Last result from LR-sensitivity
15
         314 388
                                 10.270993509735397
16
                                 0.23155267099351
          909 983
                                                                          included to report when created:
17
         175 182
                                 0.202695956065901
99
                                 0.170644033949076
                                                                          --- RESULTS BASED ON MCMC SAMPLING---
TH01
                                                                          Conservative LR (5%): log10LR=10.78
          100 120
                                 0.209086894771432
                                                                          95% CI of conservative LR (5%): log10LR=[10.50,11.08]
          94 219
                                 0.212282109973287
                                                                          Bayes Factor (MCMC): log10LR=11.29
         350 415
                                 0.140789169831766
                                                                          Number of MCMC samples (setting): 8000
9.3
         1060 934
                            x | 0.343984886574776
                                                                          Variation of randomizer (setting): 2
8.3
         118 104
                                 0.000896146569750075
                                                                          Tuned variation of randomizer (estimated): 2
99
                                 0.0929607922789887
                                                                          Seed of randomizer (setting): 1
```

Defined fragment length of Q-allele

- Note: This is only relevant when applying a degradation model.
- The user can now use an adjusted version of the fragment length for the Q-allele (YES in Settings): The weighted average of frequencies of the non-observed alleles. This will shift the fragment length of the Q-allele towards alleles that are more common in the population.
- Default (NO): The «maximum defined» fragment length at considered marker (taken from kit.txt):
- Impact: The adjusted version (YES) may have a slight impact on the likelihood values and LR.


```
Detection threshold=50
Fst-correction=0
Probability of drop-in=0.05
Hyperparam lambda=0.01
Degradation:YES
Backward Stutter:YES
Forward Stutter:NO
Backward Stutter prop. prior=function (x) dbeta(x, 1, 1)
Forward Stutter prop. prior=function (x) dbeta(x, 1, 1)
Adjusted fragmenth-length for Q-allele:NO
Rare allele frequency (minFreq):0.000896950368746264
Normalized after impute: Yes
```

Part 1: Calculating MLE based LR

Step 1: Import and visualize profiles

```
library(euroformix) #Load package
pkg = path.package("euroformix") #get package install folder

kit = "ESX17" #defining kit to use (must be defined in getKit())
AT = 50 #analytical threshold used (global for all markers)

#Importing allele frequencies
freqFile = paste0(pkg,"/FreqDatabases/",kit,"_Norway.csv") #frequency file to use
popFreq = freqImport(freqFile)[[1]] #need to select 1st population

#Importing evidence and reference profiles:
evidfn = paste0(pkg,"/examples/",kit,"_3p.csv")
reffn = paste0(pkg,"/examples/",kit,"_refs.csv")
evidData = sample_tableToList(tableReader(evidfn))
refData = sample_tableToList(tableReader(reffn))
```

```
plotEPG2(evidData,kit,refData) #Show in graphical interface
```

Step 2: Specify hypotheses for interpretation

```
Hypothesis sets: Ref3 as person of interest (POI)
Hp: Ref1 + ref3 + 1 unknown
Hd: Ref2 + 2 unknowns (all unrelated)
```

```
#Set up hypothesis (contributors)

POIidx = 3 #index of POI (in refData)

#Must construct a 'contribution vector' for each hypothesis:

condHp = c(1,0,2) #C1=Ref1, C2=Ref3

condHd = c(1,0,0) #C1=Ref1

knownRefhp = NULL #No known non-contributor reference under Hp

knownRefhd = POIidx #known non-contributor reference under Hd

NOC = 3 #assumed number of contributors
```

Step 3: Model fit of Hp and Hd

```
#We keep degradation and back-stutter models on (default), but turns off forward stutter model:
mleHp = calcMLE(NOC,evidData,popFreq,refData, condHp, knownRefhp, kit, FWS=FALSE)
mleHd = calcMLE(NOC,evidData,popFreq,refData, condHd, knownRefhd, kit, FWS=FALSE)
```

Step 4: Obtain calculated LR based on MLE

```
MLEresult = calcLRmle(mleHp,mleHd)

LRmle = MLEresult$log10LR #get LR on log10 scale

LRmleMarkers = MLEresult$log10LRmarker #get LR per markers

upperLR = MLEresult$log10LRupper #get theoretical upper LR
```

Command line

Step 5: Perform model validation

```
validhp = validMLEmodel(mleHp,"Hp")
validhd = validMLEmodel(mleHd,"Hd")
nSignifHp = sum(validhp$Significant) #numbers outside envelope
nSignifHd = sum(validhp$Significant) #numbers outside envelope
```

Step 6: Provide deconvolution

```
DCtableHp = deconvolve(mleHp)$table2 #top ranked genotypes (Hp)
DCtableHd = deconvolve(mleHd)$table2 #top ranked genotypes (Hd)
```

Step 7: Show model fit (expectation vs observations)

```
plotTopEPG2(mleHp)
```

Step 8: Provide non-contributor simulations:

```
nTippets = 10 #this typically takes a while (depending on the number)
tippets = calcTippet(POIidx,mleHp,mleHd,nTippets,seed = 1234)
```

Part 2: Calculating Bayesian based LR

Step 8: Calculate conservative LR (and estimate Bayes Factor)

```
#obtain 10% quantile as 'conservative LR'
mcmc = calcLRmcmc(mleHp,mleHd, 5000,quantile = 0.10,seed=1234)
LRcons_mcmc = mcmc$log10LRcons #estimated conservative LR
LRbayes_mcmc = mcmc$log10LRbayes #estimated Bayes factor (LR) using MCMC
```

Step 9: Calculate Bayes Factor with numerical integration

```
#The following calculation would take some time
int = calcLRint(mleHp,mleHd, reltol = 0.1, maxEval=20000)

#Obtaining calculated LR with relative errors:
LRbayes_int = int$log10LR
LRbayes_intError = int$log10LRerror
```